

Fergusson College (Autonomous) Pune

Learning Outcomes-Based Curriculum For F. Y. B. Sc. (Computer Science)

With effect from June 2019

Programme Structure

Semester	Course Code	Course Title	Course	No. of credits
	STC1101	Descriptive Statistics	TCore-1	2
	STC1102	Probability theory and discrete probability distributions	TCore-2	2
	STC1103	Statistics Practical - I	PCore-1	2
	ELC1101	Fundamentals of Logic Circuit Design	TCore-3	2
	ELC1102	Sequential Logic Circuits	TCore-4	2
First Year	ELC1103	Electronics Practical - I	PCore-2	2
– Semester I	CSC1101	Basic Programming using C	TCore-5	2
Semester 1	CSC1102	Database Management System: SQL	TCore-6	2
	CSC1103	Computer Science Practical - I	PCore-3	2
	CSC1104	Computer Science Practical - II	PCore-4	Grade
	MTC1101	Discrete Mathematics	TCore-7	2
	MTC1102	Algebra	TCore-8	2
	MTC1103	Mathematics Practical - I	PCore-5	2
	STC1201	Multiple Regression, Time Series and Simulation	TCore-1	2
	STC1202	Continuous Probability Distributions and Inference	TCore-2	2
	STC1203	Statistics Practical - II	PCore-1	2
	ELC1201	Computer Instrumentation	TCore-3	2
	ELC1202	Computer Organization	TCore-4	2
First Year	ELC1203	Electronics Practical - II	PCore-2	2
Semester	CSC1201	Advance Programming using C	TCore-5	2
II	CSC1202	Relational Database Management System: PL / SQL	TCore-6	2
	CSC1203	Computer Science Practical - III	PCore-3	2
	CSC1204	Computer Science Practical - IV	PCore-4	Grade
	MTC1201	Graph theory	TCore-7	2
	MTC1202	Calculus	TCore-8	2
	MTC1203	Mathematics Practical - II	PCore-5	2

	ELC2301	8051 Microcontroller	TCore-1	3
-	ELC2302	Communication Principles	TCore-2	3
	ELC2303	Electronics Practical III	PCore-1	2
	CSC2301	Data Structures	TCore-3	3
Second	CSC2302	Web Technologies	TCore-4	3
Year – Semester	CSC2303	Computer Science Practical – I (Lab on Data Structures)	PCore-2	2
III	CSC2304	Computer Science Practical – II (Lab on Web Technologies)	PCore-3	Grade
	MTC2301	Applied Algebra	TCore-5	3
	MTC2302	Numerical Techniques	TCore-6	3
	MTC2303	Mathematics practical	PCore-4	2
	ELC2401	ARM 7 Based LPC 2148 Microcontroller	TCore-1	3
	ELC2402	Advanced Communication and Networking	TCore-2	3
	ELC2403	Electronics Practical IV	PCore-1	2
Second	CSC2401	Exploring OOP's using Java	TCore-3	3
Second Year	CSC2402	PHP Programming	TCore-4	3
_ Semester	CSC2403	Computer Science Practical – III (Lab on Java)	PCore-2	2
IV	CSC2404	Computer Science Practical – IV (Lab on PHP Programming)	PCore-3	Grade
	MTC2401	Computational Geometry	TCore-5	3
	MTC2402	Operation Research	TCore-6	3
	MTC2403	Mathematics practical	PCore-4	2
	CSC3501	System Programming Concepts	TCore-1	3
Third Year	CSC3502	Advance Java	TCore-2	3
	CSC3503	Design And Analysis of Algorithms	TCore-3	3
Semester V	CSC3504	Software Development	TCore-4	3
	CSC3505 (Elective –I) OR	Data Analytics	DElect-1	3

	CSC3506 (Elective –II)	Digital Image Processing	DElect-2	3
	CSC3507	Android Programming		2
	(Elective –I)		DElect-3	3
	OR CSC3508	Artificial Intelligence	DElect-4	3
	(Elective – II)			_
	CSC3511	Computer Science Practical – I (Lab on System Programming)	PCore-1	3
	CSC3512	Computer Science Practical – II (Lab on Advance Java)	PCore-2	3
	CSC3513	Computer Science Project – I	PCore-3	3
	CSC3601	Operating System Concepts	TCore-1	3
	CSC3602	Python Programming	TCore-2	3
	CSC3603	Theoretical Computer Science	TCore-3	3
	CSC3604	Computer Networks	TCore-4	3
	CSC3605	Big Data Analytics	DElect-1	3
Third year	(Elective –I) OR CSC3606 (Elective – II)	Biometrics	DElect-2	3
Semester VI	CSC3607	e-Commerce	DElect-3	3
	(Elective –I) OR CSC3608 (Elective –II)	Internet of Things	DElect-4	3
	CSC3611	Computer Science Practical – III (Lab on Operating System Concepts)	PCore-1	3
	CSC3612	Computer Science Practical – IV (Lab on Python)	PCore-2	3
	CSC3613	Computer Science Project – II	PCore-3	3

Programme learning outcomes relating to B.Sc. in Computer Science

PO1	Apply the knowledge of Computing, Statistics, Mathematics and Electronics; appropriate to the discipline
PO2	Inculcate strong problem solving, analysis and decision-making abilities
PO3	Discuss and implement various programming languages
PO4	Explore the architecture, construction and design of computing
PO5	Design, develop and implement computer systems to meet the expected requirements
PO6	Apply the fundamental knowledge for professional software development as well as to acquire new skills
PO7	Inculcate an effective functioning as a member of a team to develop and implement solutions
PO8	Provide group building opportunities and leadership skills
PO9	Learn to apply software development life cycle and develop an ability to manage the execution of project plan in an effective way.
PO10	Enhance analytical and critical thinking skills
PO11	Develop written and oral communication skills for presentation and report writing
PO12	Study real life problems, design computing systems appropriate to its solutions that are technically sound, economically feasible and socially acceptable
PO13	Develop time management and organization skills
PO14	Acquire the knowledge and skills necessary to support their career in software development and databases as well as in recent trends like data analytics, artificial intelligence, Image processing etc.

Subject Name: Descriptive Statistics

Learning Outcomes	Suggested Pedagogical Processes
Learning to describe basic features of the data in a study.	Blackboard Teaching
Provide brief summary about the sample using different measures.	Provide classroom assignments
Try to infer about the behaviour of population from the sample.	
To fit predictive models for the sample data.	

Unit No.	Title and Contents
Ι	Data condensation and Graphical methods
	1.1 Raw data, attributes and variables, discrete and continuous variables.
	1.2 Presentation of data using frequency distribution and cumulative
	1.3 frequency distribution. (Construction of frequency distribution is not
	expected)
	1.4 Graphical Presentation of frequency distribution –histogram, stem
	and leaf chart, less than and more than type ogive curves.
	1.5 Numerical problems related to real life situations.
II	Measures of central tendency and dispersion
	2.1 Measures of Central tendency: Mean, Mode, Median. Examples
	2.2 where each one of these is most appropriate.
	2.3 Partition values: Quartiles, Box-Plot.
	2.4 Variance, Standard Deviation, Coefficient of Variation. (Section 2.1
	to should be covered for raw data, ungrouped frequency distribution
	and exclusive type grouped frequency distribution)
III	Moments
	3.1 Raw and Central moments: definition, computations for ungrouped
	and grouped data (only up to first four moments).
	3.2 Relation between raw and central moments upto fourth order.
	3.3 Numerical problems related to real life situations.
IV	Measures of Skewness and Kurtosis
	4.1 Concept of symmetric frequency distribution, skewness, positive and
	negative skewness.
	4.2 Measures of skewness-Pearson's measure, Bowley's measure (β_1 ,
	γ1).
	4.3 Kurtosis of a frequency distribution, measure of kurtosis (β_2 , γ_2)

	based upon moments, type of kurtosis: leptokurtic, platykurtic and	
	mesokurtic.	
	4.4 Numerical problems related to real life situations.	
V	Correlation and Linear Regression	
	5.1 Bivariate data, Scatter diagram.	
	5.2 Correlation, Positive Correlation, Negative correlation, Zero	
	Correlation Karl Pearson's coefficient of correlation (r), limits of r (-	
	$1 \le r \le 1$), interpretation of r, Coefficient of determination (r ²)	
	5.3 Meaning of regression, difference between correlation and	
	regression.	
	5.4 Fitting of line $Y = a+bX$	
	5.5 Concept of residual plot and mean residual sum of squares.	
	5.6 Numerical Problems.	
VI	Non-Linear Regression	
	6.1 Second degree curve	
	6.2 Growth curve models of the type	
	i) $Y = ae^{bX}$ ii) $Y = ab^X$ iii) $Y = aX^b$	
	6.3 Logistic model $Y = k / (1 + e^{a+bx})$	
	6.4 Numerical problems related to real life situations.	

- 1. Fundamentals of Applied Statistics (3rd Edition), Gupta and Kapoor, S. Chand and Sons, New Delhi, 1987.
- 2. An Introductory Statistics, Kennedy and Gentle.
- 3. Statistical Methods, G.W. Snedecor, W.G. Cochran, John Wiley & sons, 1989.
- 4. Introduction to Linear Regression Analysis, Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining, Wiley

Subject Name: Probability Theory and Discrete Probability Distributions

Learning Outcomes	Suggested Pedagogical Processes
Develop analytical thinking by using the ability to see a problem or solution from different points of view.	Blackboard Teaching
To help make informed judgments based on a pattern of data observed previously.	Provide classroom assignments
To apply different forms of probability distribution when the values of observed data are discrete.	

Unit No.	Title and Contents
Ι	Detailed Review / Revision of Theory of Probability
	1.1 Counting Principles, Permutation, and Combination.
	1.2 Deterministic and non-determination models.
	1.3 Random Experiment, Sample Spaces (finite and countably infinite)
	1.4 Events: types of events, Operations on events.
	1.5 Probability - classical definition, probability models, axioms of
	probability, probability of an event.
	1.6 Theorems of probability (with proof)
	i) $0 \le P(A) \le 1$ ii) $P(A) + P(A') = 1$
	ii) $P(A) \leq P(B)$ when $A \subset B$
	iii) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	1.7 Numerical problems related to real life situations.
II	Advanced Theory of Probability
	2.1 Concepts and definitions of conditional probability, multiplication
	theorem $P(A \cap B) = P(A) \cdot P(B A)$
	2.2 Bayes' theorem (without proof)
	2.3 Concept of Posterior probability, problems on posterior probability.
	2.4 Definition of sensitivity of a procedure, specificity of a procedure.
	Application of Bayes' theorem to design a procedure for false
	positive and false negative.
	2.5 Concept and definition of independence of two events.

	2.6 Numerical problems related to real life situations.
III	Discrete Random variable
	3.1 Definition of random variable and discrete random variable.
	3.2 Definition of probability mass function, distribution function and its properties.
	3.3 Definition of expectation and variance, theorem on expectation.
	3.4 Determination of median and mode using p.m.f.
	3.5 Numerical problems related to real life situations.
IV	Standard Discrete Probability Distributions
	4.1 Discrete Uniform Distribution: definition, mean, variance.
	4.2 Bernoulli Distribution: definition, mean, variance, additive property.
	4.3 Binomial Distribution: definition, mean, variance, additive property.
	4.4 Geometric Distribution (p.m.f $p(x) = pqX$,
	x = 0, 1, 2): definition, mean, variance.
	4.5 Poisson Distribution: definition, mean, variance, mode, additive
	property, limiting case of B(n, p)
	4.6 Illustration of real life situations.
	4.7 Numerical problems related to real life situations.

- 1. Statistical Methods, G.W. Snedecor, W.G. Cochran, John Wiley & sons, 1989.
- 2. Fundamentals of Applied Statistics (3rd Edition), Gupta and Kapoor, S.Chand and Sons, New Delhi, 1987.
- 3. Modern Elementary Statistics, Freund J.E., Pearson Publication, 2005.
- 4. Probability, Statistics, Design of Experiments and Queuing theory with applications Computer Science, Trivedi K.S. ,Prentice Hall of India, New Delhi,2001.
- 5. A First course in Probability 6th Edition, Ross, Pearson Publication, 2006.
- 6. Introduction to Discrete Probability and Probability Distributions, Kulkarni M.B., Ghatpande S.B., SIPF Academy, 2007.

Subject Name: Statistics Practical - I

Learning Outcomes	Suggested Pedagogical Processes
To enhance the computational techniques.	Blackboard Teaching
To use R software for studying the different concepts in Statistics.	Provide practice assignments.

	Title of Experiment/ Practical
1	Introduction to R and graphical methods using R
2	Measures of Central Tendency, verification using R
3	Measure of Dispersion, verification using R
4	Measures of Skewness and Kurtosis, verification using R
5	Basic Probability Theory
6	Advanced Theory of Probability
7	Fitting of Binomial, Poisson and Geometric distribution. Verification using R
8	Correlation and Linear Regression, verification using R
9	Model Sampling from Discrete Probability Distributions, verification using R
10	Fitting of Second degree and Exponential curves, verification using R

Course Code: ELC1101

Subject Name: Fundamentals of Logic Circuit Design

Learning Outcomes	Suggested Pedagogical Processes
Acquire the skills of logic circuit design using	Chalk board explanation
logic gates.	
Evaluate various number systems and codes	Traditional lecture method along with
used in programs development.	ICT
Solve and implement complex Boolean	Problem solving using Boolean laws and
expressions using minimisation techniques.	K- Map
Design, analyse and implement combinational,	Chalk board explanation
arithmetic and logic circuits.	

Unit No.	Title of Unit and Contents
Ι	Logic gates Introduction to analog signals and digital signals, Positive and Negative logic, pulse waveform Logic gates : definition, symbols, truth tables, Boolean expressions, pulsed operation of NOT, OR, AND, NAND, NOR, EX-OR, EX-NOR gates Universal logic gates.
Π	Number system and codes Decimal, binary, octal, hexadecimal number systems, Conversion of number from one number system to another including decimal / binary points, Binary addition, subtraction, multiplication, division, 1's and 2's complement method of subtraction BCD code numbers and their limitations, Addition of BCD numbers, Conversion of BCD to decimal and vice-versa, Excess-3 code, Gray code, binary to gray and gray to binary conversion, Concept of parity, Error detection using parity
III IV	 Boolean Algebra Rules and laws of Boolean algebra, logic expression, De Morgan's theorems, their proof, Sum of products form (min. terms), Product of sum form (max. terms), Simplification of Boolean expressions using Boolean algebra and Karnaugh map up to 4 variables. Arithmetic and logical circuits Half adder, Full adder circuit and its operation, Parallel binary adder, Half
V	Subtractor and full Subtractor, Comparator Combinational Circuits

Multiplexer(2:1 and 4:1), Demultiplexer (1:2 and 1:4), Tree Multiplexing,
Tree De-Multiplexing, Encoder, Priority encoder, Decoder, Active high
output and active low output BCD to seven segment decoder

- 1. Digital Principals, Schaum's outline series, Tata McGraw Hill (2006)
- 2. Digital System Design, Morris Mano, Pearson Education (2014)
- 3. Digital Computer Electronics, Malvino
- 4. Fundamentals of Logic design, Charles H. Roth, Jr. and Larry L. Kinney

Course Code: ELC1102

Subject Name: Sequential Logic Circuits

Credits: 2

Learning Outcomes	Suggested Pedagogical Processes
Concept of clock, asynchronous and synchronous circuits.	Question answer method
Acquire skill to analyse different Flip flops, and ICs (Integrated Circuits).	Demonstration, Interactive discussions
Application of flip flops in shift registers and in data communication.	Traditional lecture method and Power Point Presentation
Working of counters, sequential memory address generation.	Chalk board explanation
Memory hierarchy, need of memory hierarchy in computer system and types of memories used in computer.	Traditional lecture method along with ICT

Unit No.	Unit title and Contents	
Ι	Flip flopsDifference between combinational and sequential circuits, Concept of clock and types, synchronous and asynchronous circuit, Latch, S-R-latch, D-latch, Difference between latch and flip-flop, S-R, J-K and D flip-flop their operation and truth tables, race around condition, Master slave JK flip flop, T flip flop and their operation using timing diagram and truth tables	
Π	Sequential Circuits Basic building block of counter, Ripple counter, up counter, down counter, Up- Down counter, Concept of modulus counters, Decade counter, IC 7490, Shift registers: SISO, SIPO, PISO, PIPO, Ring counter, Universal 4-bit shift register, IC 7495	
III	Memory organizationMemory Architecture, Types of memory, Memory parameters (Access time, speed, capacity, cost), Concept of Address Bus, Data Bus, Control Bus, Memory Hierarchy, Memory address map Vertical & horizontal Memory expansion (increasing the capacity, increasing word size)	

- 1. Modern Digital Electronics: Jain R.P., Tata McGraw Hill
- 2. Digital Principles and Applications: Malvino Leach, Tata McGraw-Hill.
- 3. Digital Fundamentals: Floyd T.M., Jain R.P., Pearson Education
- 4. Computer Architecture: Morris Mano

Course Code: ELC1103

Subject Name: Electronics Practical - I

Credits: 2

Learning Outcomes	Suggested Pedagogical Processes
Acquire skills to draw and understand circuit diagrams using standard symbols of Electronic components, devices, power sources and logic gates.	Demonstration
Acquire skills to handle Multimeter as	Demonstration and Hands on
measuring instrument.	
Apply Boolean Laws, De Morgan's theorems to construct combinational and sequential circuits.	Demonstration and Hands on
Design and analyse different circuits using ICs.	Demonstration and Hands on
Acquired knowledge of construction of basic logic gates using semiconductor devices.	Demonstration and Hands on

Any 10 Experiments from the following list

	Title of Experiment / Practical
1	Study of discrete Logic gates
2	Study of logic gate using ICs
3	NAND gate as universal gate
4	Conversion and verification of a Boolean expression into logic circuit using logic gate IC's
5	Design a Half Adder and Full Adder
6	Design a Half Subtractor and Full Subtractor
7	Verification of De Morgan's theorems
8	Multiplexer (4:1) and De-Multiplexer(1:4)
9	Interfacing Thumbwheel switch to seven segment display
10	Study of Flip flop ICs : IC 7474, IC 74776, IC 74279
11	Study of Modulo counter using IC 7490
12	Study of Shift register IC 7495 (SISO –right, left shift and PIPO)
13	Study of up/down counter IC 74192/93
14	Rolling display

Course Code: CSC1101

Subject Name: Basic Programming using C

Learning Outcomes	Suggested Pedagogical Processes
Analyse a problem and develop the solution to solve the problem	Chalk board explanation
Learn and design algorithm development for	Traditional lecture method along with
problem solving	ICT
Learn block structured programming concepts	Live demonstration of concepts using DLP
Understand and develop programming skills	Problem solving using algorithm and
using C programming language	flowchart
Apply the strategies useful in debugging	Problem solving using program writing

Unit No.	Title of Unit and Contents	
Ι	Programming Languages and Tools	
	1.1 Machine language	
	1.2 Assembly language	
	1.3 High level languages	
	1.4 Compilers and Interpreters	
	1.5 Algorithms	
	1.6 Flowcharts	
II	Introduction to C	
	2.1 History and C as middle level language.	
	2.2 C as procedure-oriented programming	
	2.3 Structure of a C program	
	2.4 Application Areas	
	2.5 C Program development life cycle	
	2.6 Sample programs	
III	C Tokens	
	3.1 Keywords	
	3.2 Identifiers	
	3.3 Variables	
	3.4 Constants – character, integer, float, string,	
	3.5 escape sequences	
	3.6 Data types – built-in and user defined(enumerated)	
	3.7 Operators and Expressions Operator types	
	3.8 (arithmetic, relational, logical, assignment,	

	bitwise, conditional, other operators), precedence and associativity rules
IV	Control Structures
	4.1 Decision making structures if, if-else, switch
	4.2 Loop Control structures while, do-while and for
	4.3 Nested structures
	4.4 break, continue and goto
V	Functions
	5.1 What is a function?
	5.2 Advantages of Functions
	5.3 Standard library functions
	5.4 User defined functions: Declaration, definition, function call, parameter
	passing (by value), return keyword
	5.5 Scope of variables, storage classes
	5.6 Recursion
VI	Arrays
	6.1 Array declaration, initialization
	6.2 Types – one, two and multidimensional
	6.3 Passing arrays to functions

- 1. Behrouz A. Forouzan and Richard F. Gilberg, Computer Science: A Structured Programming Approach using C Third Edition, Thomson Course Technology publication
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language Second Edition, Prentice Hall Publication
- 3. Yashavant Kanetkar, Let Us C, Seventh Edition, PBP Publications
- 4. E Balagurusamy, Programming in ANSI C, Fourth Edition, Tata McGraw Hill

Course Code: CSC1102

Subject Name: Database Management System: SQL

Learning Outcomes	Suggested Pedagogical Processes
Familiarise with database concepts and applications.	Question answer method
Design data models, schemas and instances.	Interactive discussions
Implement the relational database design and data modelling using entity-relationship (ER) model.	Presentation and Hands-on session
Acquaint with the concepts of constraints and relational algebra operations	Demonstration method
Implement SQL: Data definition, constraints, schema, queries and operations in SQL	Problem solving

Unit No.	Title of Unit and Contents	
Ι	Introduction to DBMS	
	1.1 File system Vs DBMS	
	1.2 Data models (Relational, Hierarchical, Network)	
	1.3 Abstraction and Levels of abstraction	
	1.4 Data independence	
	1.5 Structure of DBMS	
	1.6 Users of DBMS	
	1.7 Advantages of DBMS	
II Database design and ER Model:		
	2.1 Introduction to ER – Model	
	2.2 Constraints, E-R Diagrams, ERD Issues,	
	2.3 Weak Entity Sets, Codd's Rules	
	2.4 Relational database model: Logical view of data, keys, integrity rules.	
	2.2Relational Database design: Features of good relational database design	
	2.3Functional dependencies (Basic concepts, F+, Closure of an Attribute	
	set, Concept of a Super Key and a primary key (Algorithm to derive a	
	Primary Key for a relation)	
	2.4Concept of Decomposition	
	2.5 Desirable Properties of Decomposition (Lossless Join & Dependency	
	Preservation)	
	2.6 Atomic domain and Normalization 1NF, 2NF, 3NF, BCNF	

III	Structured Query Language (PostgreSQL)
	3.1 Introduction
	3.2 Set operations
	3.3 Aggregate functions
	3.4 Null values
	3.5 Nested Sub-queries
	3.6 Modifications to Database
	3.7 DDL commands with examples
	3.8 SQL mechanisms for joining relations (inner joins, outer joins and their types)
	3.9 Examples on SQL (case studies)
	3.10 Introduction to PL/SQL
	3.10.1 Views
IV	Relational algebra:
	4.1 Introduction
	4.2 Basic operations: Selection and projection, set operations, renaming,
	Joins, Division

- 1. Henry F. Korth, Abraham Silberschatz, S. Sudarshan Database System Concepts, Tata McGraw-Hill Education
- 2. Korry Douglas, PostgreSQL, ISBN:9780672327568
- 3. John Worsley, Joshua Drake Practical PostgreSQL (B/CD), Shroff/O'reilly
- 4. Joshua D. Drake, John C Worsley, Practical Postgresql, O'Reilly Publication
- 5. Richard Stones, Neil Matthew, Beginning Databases with PostgreSQL From Novice to Professional, 2nd Edition Apress
- 6. Elmasri and Navathe, Fundamentals of Database Systems, 4th Edition
- 7. S. K. Singh, Database Management System: Concepts, design & applications, Pearson publication

Course Code: CSC1103

Subject Name: Computer Science Practical - I

Learning Outcomes	Suggested Pedagogical Processes
Familiarize with the use of the C programming	Programming assignments
language to implement various algorithms and	
develops the basic concepts and terminology of	
programming in general.	
Read, understand and trace the execution of	Programming assignments
programs written in C language.	
Learn to write structured C programs which is	Programming assignments
the foundation of any programming language.	
Perceive writing and use of functions and to	Programming assignments
implement function calls, and parameter passing	
options.	
Learn the concept and implementation of arrays.	Programming assignments

Title of Experiment / Practical
Use of data types, simple operators
Decision making statements (if-else and switch case)
Use of loops
Menu driven programs using standard library functions
Use of user defined functions
Recursive functions
Use of arrays (1-d arrays) and functions
Use of arrays (2-d arrays) and functions
Programs based on the concepts of Control Structures
Programs based on the concepts of Control Structures and Arrays

Course Code: CSC1104

Subject Name: Computer Science Practical - II

Credits: Grade

Learning Outcomes	Suggested Pedagogical Processes
Transform an information model into a relational	Programming assignments
database schema	
To use a data definition language and/or utility to	Programming assignments
implement the schema using a DBMS.	
Implement SQL: Data definition, constraints,	Programming assignments
schema, queries and operations in SQL	
Analyse an information storage problem and	Programming assignments
derive an information model expressed in the	
form of an entity relation diagram	
Demonstrate an understanding of normalization	Programming assignments
and apply the knowledge to the normalization of	
a database. Formulate, using relational algebra,	
solutions to a broad range of query problems.	

	Title of Experiment / Practical
1	Using basic Linux commands
2	Using vi editor
3	To create simple tables , with only the primary key constraint (as a table level constraint & as a field level constraint) (include all data types) and create more than one table, with <i>referential integrity</i> constraint, <i>Primary Key</i> constraints
4	To create one or more tables with <i>check</i> , <i>unique</i> and <i>not null</i> constraint And to drop a table from the database and to alter the schema of a table in the Database
5	To insert / update / delete records using tables created in previous Assignments. (use simple forms of <i>insert / update / delete</i> statements)
6	To query the tables using simple form of select statement
7	To query table, using set operations (union, intersect)
8	To query tables using simple and nested queries (use of except, exists, not exists)
9	Simple query handling
10	Nested query handling

Subject Name Discrete Mathematics

Credits: 2

Learning outcomes	Suggested Pedagogical Processes
Using basic concepts of Discrete mathematics.	Blackboard Teaching
Application of counting principle in	Provide classroom assignments
permutations, combinations and probability.	
Understanding of induction principle.	
Able to do operations on boolean algebra.	

Unit No.	Title and Contents	
Ι	Counting Principle	
	Cardinality of sets, Basics of Counting: Addition rule, Product rule, Inclusion and	
	Exclusion Principle, Mathematical Induction:1st and 2nd principle of induction.	
II	Lattices and Boolean Algebra	
	Introduction to relation, equivalence relation, Poset, Hasse diagram, Lattices,	
	Complemented lattice, Bounded lattice and Distributive lattice, Boolean Functions,	
	Boolean variable, Boolean Functions of degree n, Boolean identities, Definition of	
	Boolean Algebra. Representation of Boolean Functions. Minterm, Maxterm	
	Disjunctive normal form, Conjunctive normal Form.	
III	Recurrence Relations	
	Recurrence Relation, Formation. Linear Recurrence Relations with constant	
	coefficients. Homogeneous Solution. Particular Solution, Total	
	Solution.(Introduction of Solving Recurrence Relation through generating	
	Functions.	
IV	Introduction to Graphs and Operations on Graphs	
	Definition and examples of graph, Handshaking lemma and it's corollaries. Types	
	of graph, Complete graph, bipartite graph, Regular graph, Null graph.	
	Isomorphism of graphs, Adjacency and Incidence Matrix of a Graph. Vertex	
	induced subgraph, Edge induced subgraph, Vertex deleted subgraph, Edge deleted	
	subgraph, Union of two graphs, Intersection of two graphs, Product of two graphs,	
	Ring Sum of two graphs, Fusion of vertices, Complement of a graph.	

- 1. Kenneth H.Rosen. Discrete Mathematics and its applications. (7th edition) McGraw-Hill Higher Education, 2017.
- 2. Bernard Kolman, Robert C.Busby , and Sharon cutler Ross. *Discrete Mathematical Structures* (6th edition). Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 2003.
- 3. John Clark and Derek Holton, A first look at Graph Theory, 2013.

Subject: Algebra

Credits: 2

Learning outcomes	Suggested Pedagogical Processes
It promotes Abstract and Analytical thinking.	Black board teaching.
Knowledge of basic group theory and its relevance in coding theory.	Provide classroom assignments.
Compute power of integers modulo prime, using Fermat's theorem and further using this in finding public key.	

Unit	Title and Contents		
Ι	Divisibility in Integers		
	Division Algorithm (without proof), Divisibility and its properties, privile		
	numbers. Definition of G.C.D and L.C.M., Expressing G.C.D. of two integers as		
	a linear combination of the two integers. Euclidean Algorithm (Without proof).		
	Relatively prime integers, Euclid Lemma and its generalization, Congruence		
	relations and its properties, Residue Classes: Definition, Examples, addition and		
	multiplication modulo n and composition tables, Euler's and Fermat's Theorems		
	(Without proof), Chinese Remainder Theorem.		
II	Binary Operations and Groups		
	Definition of binary operation, properties of binary operations and examples.		
	Definition of group, examples. Subgroups, finite and infinite groups. Permutation		
	groups. Cyclic groups, Definition and Examples of Normal Subgroups.		
	Definition and Examples of Quotient groups.		
III	Coding Theory and RSA		
	Introduction to coding: Weight, Hamming distance, Encoding, Parity check		
	matrix, Generator Matrix, Decoding and error correction, Public key		
	cryptography.		

- 1. Burton, D. Elementary number theory. 6th ed. New York: McGraw-Hill, 2008.
- 2. Lidl, Rudolf. and Pilz, Gunter. Applied abstract algebra, 2nd edition, Gunter Pilz Springer New York, 2004.
- 3. J.B. Fraleigh, A First Course in Abstract Algebra, Seventh Ed., Pearson Education Inc., 2017.

Subject: Mathematics Practical - I

Learning outcomes	Suggested Pedagogical Processes
The computational exercises develop basic techniques and tests understanding of concepts.	Black board teaching.
To enhance mathematical ability.	Provide classroom assignments.
Able to use softwares like Scilab and geogebra to implement different Mathematic concepts.	Taking Practice of questions related to theoretical topics as well.

Sessions	Title of Experiment / Practical	
1	Scilab I: Basic Commands.	
2	Scilab II: Functions, Graphs.	
3	Scilab III: Introduction to Scilab Programming.	
4	Recurrance Relation.	
5	Divisibility.	
6	Finding roots by using Regula-falsi Method (Theory + Scilab Programming).	
7	Finding roots by using Newton Raphson Method (Theory + Scilab Programming).	
8	Lattices and Boolean Algebra.	
9	Coding Theory.	
10	Student Activity.	

Subject: Multiple Regression, Time Series and Simulation

Learning Outcomes	Suggested Pedagogical Processes
To fit advanced predictive models.	Blackboard Teaching
Study data related to time and predict its future behaviour.	Provide classroom assignments
To study different models of forecasting.	
To strengthen the skill set required for data analysis.	

Unit No.	Title and Contents		
Ι	Multiple and Partial Correlation and Regression (for trivariate data)		
	1.1 Yule's notation and concept of multiple regression.		
	1.2 Fitting of multiple regression plane.		
	1.3 Partial regression coefficient, interpretation.		
	1.4 Multiple correlation coefficient, concept, definition, computation and		
	interpretation.		
	1.5 Partial correlation coefficient, concept, definition, computation and		
	interpretation.		
	1.6 Numerical Problems		
II	Time Series		
	2.1 Meaning and Utility.		
	2.2 Components of Time Series.		
	2.3 Additive and Multiplicative models.		
	2.4 Methods of estimating trend: moving average method, least squares method		
	and exponential smoothing method.		
	2.5 Elimination of trend using additive and multiplicative models.		
	2.6 Measurement and estimation of seasonal variations using link relative method		
	and ratio to trend method		
	2.7 Simple time series models: AR (1), AR (2).		
	2.8 Numerical problems related to real life situations.		
III	Non parametric tests		
	3.1 Run test		
	3.2 Sign test.		
	3.3 Kolmogrov - Smirnov test		
	3.4 Mann – Whitney test		
	3.5 Numerical problems related to real life situations.		

IV	Simulation		
	4.1 Introduction to Simulation, merits and demerits.		
	4.2 Monte Carlo Simulation		
	4.3 Pseudo-random number generator, requisites of a good random number		
	generator, testing these requirements by using various test of hypothesis using		
	Run test, goodness of fit test, Sign test etc.		
	4.4 Model Sampling from uniform and exponential distribution.		
	4.5 Model sampling from Normal distribution using Box-Muller transformation.		
	4.6 Numerical problems related to real life situations.		
V	Queueing Model		
	5.1 M/M/1 : FIFO as a application of exponential distribution, Poisson		
	distribution and Geometric distribution.		
	5.2 Interarrival rate (λ) service rate (μ), traffic intensity ($\rho = \lambda/\mu < 1$), queue		
	discipline,		
	5.3 probability distribution of number of customers in queue,		
	5.4 average queue length, average waiting time in (i) queue (ii) system.		

- 1. Statistical Methods, G.W. Snedecor, W.G. Cochran, John Wiley & sons, 1989.
- 2. Statistical Methods, J. Medhi, New Age International, 1992.
- 3. Time Series Methods, Brockell and Devis, Springer, 2006.
- 4. Time Series Analysis,4th Edition, Box and Jenkin, Wiley, 2008.
- 5. Simulation and Modelling Analysis, Kelton and Law, Tata McGraw Hill, 2007.
- 6. System Simulation with Digital Computer, Narsingh Dev, Prentice Hall, 2003.

Subject: Continuous Probability Distributions and Inference

Learning Outcomes	Suggested Pedagogical Processes
To apply different forms of probability distribution when the values of observed data are continuous	Blackboard Teaching
How to use sample data to answer research questions	Provide classroom assignments
To study how hypothesis ensures the entire research process remains scientific and reliable	

Unit No.	Title and Contents
Ι	Continuous Random Variable
	1.1 Definition of continuous random variable (r.v.),
	1.2 Probability density function (p.d.f.),
	1.3 Cumulative distribution function (c.d.f.), its properties.
	1.4 Calculation of mean, mode, median, variance, standard deviation
	for continuous r. v.
	1.5 Numerical problems related to real life situations.
II	Standard Continuous Probability Distributions
	2.1 Uniform Distribution: statement of p.d.f., mean, variance, nature of
	probability curve.
	2.2 Exponential Distribution: statement of p.d.f. of the form, $f(x) =$
	$(1/\theta)$ e(-x/ θ), mean, variance, nature of probability curve, lack of
	memory property.
	2.3 Normal Distribution: statement of p.d.f., identification of
	parameters, nature of probability density curve, standard normal
	distribution, symmetry, distribution of aX+b, aX+bY+c where X
	and Y are independent normal variables, computations of
	probabilities using normal probability table, normal approximation
	to binomial and Poisson distribution, central limit theorem
	(statement only), normal probability plot.
	2.4 Pareto Distribution: p.d.f., mean, variance, applications.
	2.5 Numerical problems related to real life situations.
III	Testing of hypothesis
	3.1 Definitions: population, statistic, SRSWR, SRSWOR, random
	sample from a probability distribution, parameter, statistic, standard

		error of estimator.	
	3.2	Concept of null hypothesis and alternative hypothesis, critical	
		region, level of significance, type I and type II error, one sided and	
		two sided tests, p-value.	
IV	Lar	rge Sample Tests	
	4.1	$H_0: \mu = \mu_0 Vs H_1: \mu \neq \mu_0, \mu < \mu_0, \mu > \mu_0$ (One sided and two-sided	
		tests)	
	4.2	$H_0: \mu_1 = \mu_2 \text{ Vs } H_1: \mu_1 \neq \mu_2, \mu_1 < \mu_2, \mu_1 > \mu_2 \text{ (One sided and two-sided)}$	
		tests)	
	4.3	$H_o: P = P_o Vs H_1: P \neq P_o, P < P_o, P > P_o$ (One sided and two-sided	
		tests)	
	4.4	$H_0: P_1 = P_2 Vs H_1: P_1 \neq P_2, P_1 < P_2, P_1 > P_2$ (One sided and two-sided	
		tests)	
	4.5	Numerical problems related to real life situations.	
V	Tests based on t, Chi-square and		
	F-d	F-distribution	
	5.1	H _o : $\mu = \mu_o Vs H_1$: $\mu \neq \mu_o$, $\mu < \mu_o$, $\mu > \mu_o$ (One sided and two-sided	
		tests)	
	5.2	$H_0: \mu_1 = \mu_2 \text{ Vs } H_1: \mu_1 \neq \mu_2, \mu_1 < \mu_2, \mu_1 > \mu_2 \text{ (One sided and two-sided)}$	
	5.2	H _o : $\mu_1 = \mu_2$ Vs H ₁ : $\mu_1 \neq \mu_2$, $\mu_1 < \mu_2$, $\mu_1 > \mu_2$ (One sided and two-sided tests)	
	5.2 5.3		
		tests)	
	5.3	tests) Paired t-test.	
	5.3 5.4	tests) Paired t-test. Chi square test for goodness of fit	
	5.3 5.4 5.5	tests) Paired t-test. Chi square test for goodness of fit Test for independence of attributes (m X n contingency table)	
	5.3 5.4 5.5	tests) Paired t-test. Chi square test for goodness of fit Test for independence of attributes (m X n contingency table) Test for significance of variation for a population. (One sided and	
	5.3 5.4 5.5 5.6	tests) Paired t-test. Chi square test for goodness of fit Test for independence of attributes (m X n contingency table) Test for significance of variation for a population. (One sided and two sided tests)	
	5.3 5.4 5.5 5.6	tests) Paired t-test. Chi square test for goodness of fit Test for independence of attributes (m X n contingency table) Test for significance of variation for a population. (One sided and two sided tests) Test for equality of population variances (One sided and two sided	

- 1. A First course in Probability 6th Edition, Ross, Pearson Publication, 2006.
- 2. Modern Elementary Statistics, Freund J.E., Pearson Publication, 2005.
- 3. Probability, Statistics, Design of Experiments and Queuing theory with applications Computer Science, Trivedi K.S., Prentice Hall of India, New Delhi, 2001.
- 4. Common Statistical Tests, Kulkarni M.B., Ghatpande S.B., Gore S.D., Satyajeet Prakashan, Pune, 1999.

Subject: Statistics Practical - II

Learning Outcomes	Suggested Pedagogical Processes
To develop inferential techniques using different computational exercises.	Blackboard Teaching
To use R software for validating the results studied in computational exercises.	Provide practice assignments.

	Title of Experiment / Practical		
1	Multiple Regression, Multiple and Partial Correlation Coefficient, verification		
	using R		
2	Time Series-I		
3	Time Series-II		
4	Model Sampling from Continuous probability distributions, verification using R		
5	Fitting of Normal distribution, verification using R		
6	Computations of probabilities of Normal and Exponential distributions,		
	verification using R		
7	Large sample tests of hypothesis		
8	Non-parametric tests, verification using R		
9	Tests based on chi-square distribution, verification using R		
10	Tests based on t and F distributions, verification using R		

Course Code: ELC1201

Subject Name: Computer Instrumentation

Learning Outcomes	Suggested Pedagogical Processes
Analyse different sensors and their operation in the application circuits.	Presentation and Discussion
Design and working of Analog to Digital and Digital to Analog converters.	Chalk Board method
Construction of amplifier using semiconductor devices	Chalk Board & Using ICT
Design and analyse different Electronic systems in which sensors are used.	Using ICT

Unit No.	Unit title and Contents			
	Sensors			
	1.1 Definition of sensors and transducers			
	1.2 Classification of sensors: Active and passive sensors			
Ι	1.3 Specifications of sensor: Accuracy, range, linearity, sensitivity, resolution, reproducibility.			
	1.4 Temperature sensors (LM-35 and AD590), piezoelectric humidity sensor, optical			
	sensor (LDR), displacement sensor (LVDT), Passive Infrared sensor (PIR),			
	Touch sensor, Ultrasonic sensor			
	1.5 Applications of Sensor.			
	Signal Conditioning Circuits			
	2.1 Introduction to signal conditioning, Transistor amplifier,			
II	2.2 Operational Amplifier: Characteristics of Op-Amp, Inverting and Non inverting			
	amplifier, Concept of virtual ground, Three OP-amp instrumentation amplifier,			
	2.3 Filters: active and passive filters, Op-Amp based filters: Low Pass Filter, High			
	Pass Filter, Concept of Band Pass Filter, Band reject filter, Notch Filter			
	Data Converters:			
	3.1 Digital to Analog Converter (DAC): Resistive divider, R-2R ladder, Parameters			
	of DAC: Linearity, resolution, accuracy			
III	3.2 Analog to Digital Converter: Flash ADC, Successive approximation ADC			
	and dual slope ADC			
	3.3 Parameters of ADC: Linearity, resolution, conversion time, accuracy, ADC/DAC			
	IC's (ADuC 814, IC 0808).			

- 1. Sensors & Transducers: Dr. A. D. Shaligram: CTC publications
- 2. Op-Amps and Linear Integrated Circuits: Ramakant Gaikwad: PHI: 4th Ed.
- 3. Digital Principles and applications: Malvino Leach, Saha

Course Code: ELC1202

Subject Name: Computer Organization

Credits: 2

Learning Outcomes	Suggested Pedagogical Processes
Ability to understand basic structure of computer and organization of ALU, Memory unit and Input Output Unit.	Traditional lecture method along with PPT & ICT
Understand the basics of organizational and architectural issues of a digital Computer.	Traditional lecture method along with PPT & ICT

Unit No.	Unit title and Contents		
	Memory organization		
т	Basic structure of computer system		
Ι	Associative Memory, Cache memory,		
	Cache mapping techniques: direct, associative, set associative		
	virtual memory, virtual memory mapping (paging and segmentation).		
	Register and stack Organization		
н	Register based CPU organization		
II	stack organization: concept of PUSH, POP, Top of Stack and Stack pointer,		
	Ascending and Descending stack,		
	Register stack, Memory stack		
	Input output organization		
	Need of interface, Block diagram of general I/O interface,		
	Working concepts like polling, Daisy chain, interrupt initiated data transfer.		
III	Concept of DMA, DMA transfer, DMA Controller		
	General block diagram of UART		
	Serial communication standards RS-232.		
	Microprocessor		
	Evolution of Microprocessor (8086 to Pentium 4)		
IV	Concept of RISC & CISC, Von- Neumann & Harvard Architecture		
	Concept of pipeline, 8086 Architecture		
I corning Do			

- 1. Computer system Architecture: Morris Mano, Pearson Publication
- 2. Computer Organization and Architecture: Designing for Performance, W. Stallings, Eighth Edition, Pearson
- 3. Microprocessors and Interfacing: Douglas V. Hall, Mcgraw Hill Higher Education

Course Code: ELC1203

Subject Name: Electronics Practical - II

Credits: 2

Learning Outcomes	Suggested Pedagogical Processes
Design of: 4 bit ALU, Read Only Memory(ROM), parallel priority interrupt system, Temperature sensing system, Instrumentation amplifier	Demonstration and Hands-on circuit design
Wired communication, read and write operation of RAM memory.	Demonstration and Hands on writing & reading data
Construction of filter circuits, fastest ADC, R- 2R ladder DAC.	Hands-on circuit design
Design of DC power supply and PWM based SMPS.	Hands-on circuit design
Components of Motherboard.	Demonstration using ICT
Acquire skill of application circuit design and Presentation	Hands-on circuit design and Presentation

Any Eight Experiments from the following list:

Expt. No.	Title of Experiment / Practical
1	Parallel Priority Interrupt circuit
2	Wired communication using RS-232 by Termite software
3	Study of ALU (74181).
4	Read write action of RAM
5	Diode matrix ROM
6	EPROM
7	Study of Motherboard
8	Temperature Sensor using LM-35
9	Instrumentation amplifier
10	Filters
11	Flash ADC
12	R-2R Ladder
13	Study of DC power supply

Course Code: CSC1201

Subject Name: Advance Programming using C

Learning Outcomes	Suggested Pedagogical Processes
Identify appropriate sorting and searching techniques for the given problems using arrays.	Chalk board explanation
Implement the dynamic memory management techniques using the concept of Pointers.	Traditional lecture method along with ICT
Ability to work with characters and strings	Live demonstration of concepts using DLP
Competence to design simple application using structures and files.	Live demonstration of concepts using DLP and implementation
Proficiency to use various techniques for representation of the data in the real world.	Live demonstration of concepts using DLP and implementation

Unit No.	Title of Unit and Contents	
Ι	Application of array	
	1.1 Sorting techniques (bubble, insertion, selection)	
	1.2 Searching techniques (linear search, binary search)	
II	Pointers	
	2.1 Pointer declaration, initialization	
	2.2 Dereferencing pointers	
	2.3 Pointer arithmetic	
	2.4 Pointer to pointer	
	2.5 Arrays and pointers	
	2.6 Functions and pointers – passing pointers to functions,	
	function returning pointers	
	2.7 Dynamic memory allocation	
III	Strings	
	3.1 Declaration and initialization, string input/output, format	
	specifiers	
	3.2 Standard library functions	
	3.3 Strings and pointers	
	3.4 Array of strings	
	3.5 Command Line Arguments	

IV	Structures and Unions		
	4.1 Creating structures		
	4.2 Accessing structure members (dot Operator)		
	4.3 Structure initialization		
	4.4 Array of structures		
	4.5 Passing structures to functions		
	4.6 Nested structures		
	4.7 Pointers and structures		
	4.8 Self-referential structure		
	4.9 Unions		
	4.10 Difference between structures and unions		
	4.11 typedef		
	4.12 Bit-Fields		
V C Preprocessor			
	5.1 Introduction of Preprocessor directive		
	5.2 File Inclusion directive		
	5.3 Macro substitution, nested macro, argumented macro		
VI	File Handling		
	6.1 Introduction		
	6.2 Modes of file opening		
	6.3 Operations on files		

- 1. Behrouz A. Forouzan and Richard F. Gilberg: Computer Science: A Structured Programming Approach using C Third Edition, Thomson Course Technology publication
- 2. Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language, Second Edition, Prentice Hall Publication
- 3. Yashavant Kanetkar : Let Us C, Seventh Edition, PBP Publications
- 4. E Balagurusamy : Programming in ANSI C, Fourth Edition, TMH

Course Code: CSC1202

Subject Name: Relational Database Management System: (PL / SQL)

Suggested Pedagogical Processes
Question answer method
Interactive procedure
Presentation and Hands-on session
Demonstration method
Problem solving

Unit No.	Title of Unit and Contents	
Ι	Relational Database Design 1.1 PL/PgSQL: Datatypes, Language structure	
	1.2 Controlling the program flow, conditional statements, loops	
	1.3 Views	
	1.4 Stored Functions, Stored Procedures	
	1.5 Handling errors and exceptions	
	1.6 Cursors	
	1.7 Concepts of Triggers	
II	Transaction Concepts and concurrency control	
	2.1 Describe a transaction, properties of transaction, state of the transaction.	
	2.2 Executing transactions concurrently associated problem in concurrent	
	execution. Schedules, types of schedules, concept of Serializability,	
	precedence graph for Serializability.	
	2.3 Ensuring Serializability by locks, different lock modes, 2PL and variations.	
	2.4 Basic timestamp method for concurrency, Thomas Write Rule.	
	2.5 Locks with multiple granularity, dynamic database concurrency	
	(Phantom Problem)	
	2.6 Timestamps versus locking	
	2.7 Deadlock handling methods	
	2.8 Detection and Recovery (Wait for graph)	
	2.9 Prevention algorithms (Wound-wait, Wait-die)	

III	Crash Recovery	
	3.1 Failure classification	
	3.2 Recovery concepts	
	3.3 Log base recovery techniques (Deferred and Immediate update)	
	3.4 Checkpoints	
	3.5 Recovery with concurrent transactions (Rollback, checkpoints, commit)	
	3.6 Database backup and recovery from catastrophic failure	

- 1. Henry F. Korth, Abraham Silberschatz, S. Sudarshan Database System Concepts, Tata McGraw-Hill Education
- 2. Korry Douglas, PostgreSQL, ISBN:9780672327568
- 3. John Worsley, Joshua Drake Practical PostgreSQL (B/CD), Shroff/O'reilly
- 4. Joshua D. Drake, John C Worsley Practical Postgresql, O'Reilly
- 5. Richard Stones, Neil Matthew, Beginning Databases with PostgreSQL, From Novice to Professional, 2nd Edition Apress
- 6. Elmasri and Navathe Fundamentals of Database Systems 4th Edition
- 7. S.K Singh, Database Management System: Concepts, design & applications Pearson publication

Course Code: CSC1203

Subject Name: Computer Science Practical - III

Learning Outcomes	Suggested Pedagogical Processes
Introduces the more advanced features of the C	Hands-on on programming assignments
language.	
Develop code that utilizes pointers which helps	Hands-on on programming assignments
in proper management of memory.	
Gain skills to handle strings.	Hands-on on programming assignments
Illustrate operations on text and binary files.	Hands-on on programming assignments
Develop interest and lay foundation to learn data	Hands-on on programming assignments
structures and Java	

	Title of Experiment / Practical	
1	Application of array	
2	Use of pointers	
3	Concept of strings, array of strings	
4	String operations using pointers.	
5	Structures using array, pointer and functions.	
6	Nested structures and concept of union	
7	Command line arguments and pre-processor directives.	
8	File handling	
9	Programs based on concepts of Sorting and File Handling	
10	Programs based on concepts of Data Handling using Structure and Files	

Course Code: CSC1204

Subject Name: Computer Science Practical - IV

Credits: Grade

Learning Outcomes	Suggested Pedagogical Processes
Learn, analyse and apply common SQL	Hands-on on programming assignments
statements including DDL, DML and DCL	
statements to perform different operations.	
Design different views of tables for different	Hands-on on programming assignments
users and to apply embedded and nested queries	
Design and implement a database for a given	Hands-on on programming assignments
problem according to well-known design	
principles that balance data retrieval	
performance with data consistency	
Acquiring the needs of database processing and	Hands-on on programming assignments
learn techniques for controlling the	
consequences of concurrent data access	
Implementing the concept of Transaction and	Hands-on on programming assignments
Query processing	

	Title of Experiment / Practical
1	Queries using Aggregate Functions
2	Nested queries
3	Control Structures
4	Stored Functions
5	Views
6	Exception handling
7	Cursors
8	Triggers
9	Queries using loops and conditional Statements
10	Queries using cursors and views

Subject Name: Graph theory

Learning outcomes	Suggested Pedagogical Processes
Demonstrate knowledge of the syllabus material.	Blackboard teaching
Write precise and accurate mathematical definitions of objects in graph theory.	Provide classroom assignments
Use a combination of theoretical knowledge and independent mathematical thinking in making relevance of real life problems to graph theory.	

Unit No.	Title and Contents	
Ι	Connected Graphs	
	1.1 Walk, Trail, Path, Cycle: Definitions and elementary properties. Connected Graphs: definition and properties.	
	1.2 Distance between two vertices, eccentricity, centre, radius and diameter of a graph. Isthmus, Cut vertex: Definition and properties. Cutset, edge connectivity, vertex connectivity. Weighted Graph and Dijkstra's Algorithm.	
Π	Eulerian and Hamiltonian Graphs	
	2.1 Eulerian graph: Definition and examples, necessary and sufficient conditions, Fleury's Algorithm. Hamiltonian Graphs: Definition and examples, necessary condition .Introduction to Chinese Postman Problem and Travelling Salesman Problem.	
III	Trees	
	3.1 Definition, Properties of trees. Centre of a tree. Binary Tree: Definition and properties. Tree Traversal. Spanning Tree: Definition, Properties, Shortest Spanning Tree, Kruskal's Algorithm.	
IV	Directed Graphs	
	 4.1 Definition, Examples, Elementary Terminologies and properties. Special Types of Digraphs. Connectedness of digraphs. Network and Flows: definition and examples. 4.2 Topological Sorting 	
V	4.2 Topological Sorting. Coloring of Graphs	
	5.1 Chromatic Number. Chromatic Partitioning. Chromatic Polynomial. Matching.	

- 1. Kenneth Rosen, Discrete Mathematics and It's Applications (Tata McGraw Hill) ,7th edition,2007.
- 2. John Clark and Derek Holton, A First Look at Graph Theory (Allied Publishers), 2013.
- 3. Narsingh Deo, Graph Theory with Applications to Computer Science and Engineering, (Prentice), 1974.

Subject Name: Calculus

Learning outcomes	Suggested Pedagogical Processes
Apply the techniques for solving linear systems of ordinary differential equations.	Blackboard teaching.
Understanding of continuous and derivable functions and mean value theorems.	Provide classroom assignments.
Using Taylor's theorem, student will able to find series expansion of several functions.	

Unit	Title and Contents		
Unit	Continuity and Differentiability		
Ι			
1	1.1 Continuity and Properties of continuous functions defined on [a, b]		
	(Without proof) and examples.		
	1.2 Differentiability.		
	1.3 Theorem – Differentiability implies continuity but not conversely.		
	1.4 Intermediate value theorem (without proof).		
	1.5 Rolle's theorem (Geometric interpretation).		
	1.6 Lagrange's Mean Value Theorem (with proof and geometric		
	interpretation)		
	1.7 Cauchy's Mean Value Theorem (with proof),		
	1.8 Verification and applications.		
	1.9 L'Hospital's Rule (without proof).		
	Successive Differentiation		
II	2.1 The nth derivatives of standard functions.		
	2.2 Leibnitz's Theorem (with proof), Examples.		
III	Taylor's and Maclaurin's Theorems		
	3.1 Taylor's and Maclaurin's Theorems with Lagrange's and Cauchy's		
	form of remainders (without proof)		
	3.2 Taylor's and Maclaurin's Series.		
	Ordinary differential equations [Lectures 11]		
IV	4.1 Basic Concepts: Introduction, Definition, Direction Fields.		
	4.2 First Order Differential Equations:		
	4.2.1 Linear Differential Equations,		
	4.2.2 Separable Differential Equations,		
	4.2.3 Exact differential Equations,		

4	4.3 Bernoulli Differential Equations, Substitutions,
4	4.4 Euler's method.
4	4.5 Second Order Differential Equations: Basic concepts, Real, distinct
	roots, complex roots, repeated roots, Reduction of order.

- 1. George F.Simmons, Differential equations with application and historical notes, McGraw Hill Education, 2nd edition, 2009.
- 2. Serge Lang, A First Course in Calculus, Springer publication, 5th edition, 2011.

Subject Name: Mathematics Practical - II

Learning outcomes	Suggested Pedagogical Processes
The computational exercises develop basic techniques and tests understanding of concepts.	Black board teaching.
To enhance mathematical ability.	Provide classroom assignments.
Able to use softwares like Scilab and geogebra to implement different mathematical concepts.	Taking Practice of questions related to theoretical topics as well.

	Title of Experiment/ Practical
1	Geogebra: Introduction, Graphs of basic functions.
2	Numerical Integration Technique by using Scilab: Trapeziodal rule.
3	Numerical Integration Techniques by using Scilab: Simpson's $(1/3)^{rd}$ and Simpson's $(3/8)^{th}$ rule.
4	Continuity and Mean value Theorem.
5	Connected Graphs.
6	Successive Differentiation.
7	Trees.
8	Taylor's and Maclaurin's Theorems.
9	Directed Graphs.
10	Solution to ODE by Euler's Method (By Scilab). Runge-kutta of 2 nd and 4 th order (By Scilab).